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Abstract

Action video gaming can promote neural plasticity. Short-term monocular patching drives neural plasticity in
the visual system of human adults. For instance, short-term monocular patching of 0.5–5 h briefly enhances
the patched eye’s contribution in binocular vision (i.e., short-term ocular dominance plasticity). In this study,
we investigate whether action video gaming can influence this plasticity in adults with normal vision. We meas-
ured participants’ eye dominance using a binocular phase combination task before and after 2.5 h of monocu-
lar patching. Participants were asked to play action video games, watch action video game movies, or play
non-action video games during the period of monocular patching. We found that participants’ change of ocu-
lar dominance after monocular patching was not significantly different either for playing action video games
versus watching action video game movies (Comparison 1) or for playing action video games versus playing
non-action video games (Comparison 2). These results suggest that action video gaming does not either
boost or eliminate short-term ocular dominance plasticity, and that the neural site for this type of plasticity
might be in the early visual pathway.

Key words: action video gaming; binocular phase combination; monocular patching; ocular dominance; visual
plasticity

Significance Statement

Recent studies have shown that short-term (0.5–5 h) monocular patching induces a new form of short-term
ocular dominance plasticity in human adults, in which the patched eye rather than the unpatched eye gets
stronger, and the effect is transient. On the other hand, there is evidence that action video gaming has po-
tential in enhancing perceptual learning induced visual plasticity in adulthood. In this study, we found that
action video gaming did not impact short-term ocular dominance plasticity in visually normal adults. Our
psychophysical evidence suggests that the neural site of this plasticity should be local and early in the corti-
cal pathway.

Introduction
Action video gaming has been popular in the general

public and for research (Green and Bavelier, 2003, 2006,
2007, 2012; Dye et al., 2009; Buckley et al., 2010; Jeon et

al., 2012; Appelbaum et al., 2013; Latham et al., 2013;
Morin-Moncet et al., 2016; Franceschini et al., 2017;
Bediou et al., 2018; Föcker et al., 2018). It is fast-paced
and perceptually demanding, requiring the players to
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provide quick motor responses and oversee objects in
surroundings (Dale and Green, 2017; Bediou et al., 2018;
Wong and Chang, 2018; Bavelier and Green, 2019). In
both observational (Green and Bavelier, 2003; Blacker
and Curby, 2013; Wilms et al., 2013; Huang et al., 2017)
and training (Green and Bavelier, 2003; Boot et al., 2008;
Oei and Patterson, 2013; Bisoglio et al., 2014) studies, it
has been shown to enhance our cognition, perception
and attention on task-relevant and irrelevant visual stimuli
(Green and Bavelier, 2003, 2006; Castel et al., 2005; Boot
et al., 2008; Dye et al., 2009; Wang et al., 2016; Föcker et
al., 2018; Bavelier and Green, 2019). Action video gaming
also improves visual functions of adults. For instance,
after 30–50 h of action video game training, the adults ex-
hibited enhanced spatial resolution (Green and Bavelier,
2007), improved contrast sensitivity (Li et al., 2009), and bet-
ter performance in a visual counting task (Li et al., 2011).
Jeon et al. (2012) later confirmed these visual improvements
by measuring visual acuity, stereopsis, global motion, and
configural face processing. Electrophysiological evidence
shows that professional gamers have faster detection and
responses to visual stimuli (Latham et al., 2013). Taken to-
gether, these studies suggest that action video gaming has
potential in enhancing visual plasticity in adulthood.
Recently, a new form of neural plasticity has been re-

ported in adults. Patching one eye (i.e., monocular patch-
ing) for a short period (0.5–5 h) of time increases the
contribution of the patched eye in binocular vision (Lunghi
et al., 2011; Zhou et al., 2013a,b; Bai et al., 2017; Kim et
al., 2017; Min et al., 2018, 2019; Ramamurthy and Blaser,
2018). The change, which is referred to as short-term ocu-
lar dominance plasticity (Lunghi et al., 2015a), is linked to
the primary visual cortex (Zhou et al., 2017). The plasticity
is quite different from that observed during the critical pe-
riod, where the unpatched eye improves (Hubel and
Wiesel, 1970; Berardi et al., 2000). Lunghi et al. (2011) first
reported the phenomenon using binocular rivalry (i.e., bin-
ocular competition); the change lasted for up to 90min.
Other investigators subsequently confirmed this finding
via binocular rivalry or binocular combination (Zhou et al.,
2013a,b; Bai et al., 2017; Kim et al., 2017; Başgöze et al.,
2018; Ramamurthy and Blaser, 2018). The neural basis of
this short-term ocular dominance plasticity is thought to
occur in the early visual pathway (Lunghi et al., 2015a,b;
Zhou et al., 2015; Chadnova et al., 2017; Binda et al.,
2018). Despite these numerous studies, the neural

mechanisms of this plasticity and factors that could en-
hance it are still unknown.
Recent studies (Lunghi et al., 2016; Sauvan et al., 2019)

suggest that neuroplastic changes induced by both short-
term and long-term patching are tightly connected. With a
presumably similar neural mechanism, one form of plas-
ticity might be able to predict or enhance the other. Given
the potential of action video gaming in enhancing the
long-term visual plasticity as we mentioned above (e.g.,
perceptual learning; Li et al., 2009, 2011; Jeon et al.,
2012), we thought it would be worthwhile to see whether
action video gaming could influence short-term ocular
dominance plasticity. In particular, we asked our partici-
pants to complete three different tasks (playing action
video games, watching action video game movies and
playing non-action video games) during 2.5 h of monocu-
lar patching, and compared their pre-patching and post-
patching ocular dominance. We hypothesized that action
video gaming could strengthen this form of plasticity,
and, therefore, we expected ocular dominance to be
modulated significantly more with action video gaming,
compared with the other two tasks. We found that for
all three conditions, monocular patching induced signifi-
cant changes in ocular dominance. However, our results
showed no evidence for a strengthened effect with action
video gaming.

Materials and Methods
Participants
We recruited twelve normal adults (age: 23.006

2.05 years old; seven females) for this study. According to
their reported playing habits and the ranks given by their
games, four of the participants were considered “expert”
whereas the other eight were considered “less experi-
enced”. We did not recruit “novices” (with no experience
of the action video games that we used) in this study. This
was because the gaming tasks could be difficult for novi-
ces to finish due to the complexity of this game genre
(e.g., the complicated environment and the manipulation
of items and/or spells in these games). All participants
had normal or corrected-to-normal visual acuity (no
worse than 0.0 logMAR) in both eyes, with spherical
equivalent no more than 1.00D and astigmatism no more
than 0.75D. No participants had ophthalmic diseases in-
cluding but not limited to strabismus, amblyopia and nys-
tagmus, or had history of visual training, occlusion
therapy or ophthalmic surgeries including recently-per-
formed refractive surgeries. During the experiments, par-
ticipants were required to wear their normal refractive
correction if needed.
A written informed consent was obtained from each

participant before the beginning of the experiments. This
study was in line with the Declaration of Helsinki and was
approved by the Ethics Committee of Wenzhou Medical
University.

Apparatus
In the ocular dominance measures, all stimuli were gen-

erated on a MacBook Pro (13-inch, 2017, Apple Inc)
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running MATLAB R2016b (The MathWorks Inc) with
Psychtoolbox 3.0.14 extensions. We used a head-mounted
display, GOOVIS (AMOLED display, NEDOptics), to achieve
dichoptic viewing. The refresh rate of the display was 60Hz,
and the resolution was 1920� 1080. Gamma correction
was applied to ensure a linear output in the test. We used a
custom-made chinrest to prevent movements of partici-
pants’ heads during the measurement sessions.
We included two desktop games, the League of Legends

(Riot Games) and the PlayerUnknown’s Battlegrounds
(PUBG Corporation), and their similar mobile versions
(Tencent Games; for details, see https://pvp.qq.com,
https://pubgm.qq.com, and https://pg.qq.com) as action
video games in this study. For non-action video games, we
included Minesweeper (http://minesweeperonline.com/).
Participants used their own devices (either laptops or mobile
devices) for all tasks.

Design
Each participant completed three experiment sessions.

In a typical session (Fig. 1), initial ocular dominance was
obtained at baseline (T0), after which the participant re-
ceived 2.5-h patching of their dominant eye with a translu-
cent patch. During this stage, one of the three tasks (i.e.,
playing action video games, watching action video game
movies and playing non-action video games), was as-
signed to each participant. Participants completed the
tasks at a comfortable distance depending on the plat-
form of the games (whether desktop or mobile) under nor-
mal indoor illuminance. Participants were allowed to take
a restroom break as needed; during most of the time,
however, participants were instructed to focus on the as-
signed tasks, under supervision of the experimenter.
Subsequently, ocular dominance was measured at 0, 3, 6
and 9min (T1, T2, T3, T4) and 30min (T5) after the patch
was removed. These post-patching results were then
compared with the initial baseline, and any changes in oc-
ular dominance would indicate the strength of ocular
dominance plasticity.
These three experiment sessions (i.e., playing action

video games, watching action video game movies and
playing non-action video games) were conducted on sep-
arate days in a random order. To compare the impact
of pure visual stimulation versus that of complex inte-
grated stimulation (e.g., visual stimulation with auditory

inputs and attentional engaging), we turned off the sound
while participants were watching action video game mov-
ies; in this way, action video game movies should be inter-
preted as movies that provided the same visual inputs as
when participants were playing the games. The former
condition would enable us to quantify the pure visual plas-
ticity, while the latter would enable us to quantify the addi-
tional benefits of playing action video games.

Procedures
Measurement of ocular dominance was completed by a

binocular phase combination paradigm (Ding and Sperling,
2006). In each trial, participants were first asked to finish an
eye alignment (fusion) task and then a binocular phase
combination task, where two horizontal gratings with the
same spatial frequency (0.46 cycles per degree, c/d) and
opposite phase shifts (�22.5° and 122.5°) were dichopti-
cally presented to the two eyes of our participants (Fig. 2).
Participants would perceive the two stimuli as one fused
horizontal grating, of which the perceived phase was deter-
mined by the relative strength of the two eyes’ contribu-
tions to the binocular viewing. Stimulus contrast was set as
100% for the non-dominant eye and d � 100% (0� d � 1)
for the other eye. d is the interocular contrast ratio close to
individuals’ balance point (i.e., at which the binocular per-
ceived phase was close to zero degrees), which was se-
lected based on their performance from practice trials.
Participants were asked to move a flanking reference line
to the middle of the central dark stripe of the fused grating.
This position of the reference line was then converted into
the perceived phase for each participant. To avoid a poten-
tial positional bias, two configurations were given: in
configuration 1, the phase was set as �22.5° for the domi-
nant eye and 122.5° for the non-dominant eye; in configu-
ration 2, the phase was set reversely. This was repeated
eight times in a typical test session, which would last
;3min. After all the sixteen trials (i.e., two configurations�
eight repetitions) were performed, an average perceived
phase (i.e., [phase in configuration 1 – phase in configura-
tion 2]/2) was calculated to indicate ocular dominance. A
negative change after monocular patching in the perceived
phase would indicate that the dominant eye (i.e., the
patched eye) became stronger, while a positive change in
the perceived phase would indicate that the unpatched
eye became stronger. More details of the paradigm (Fig. 2)
are described in a previous study (Zhou et al., 2013b).

Pre-patching
measurement

(T0) Monocular patching (2.5hrs) 

Post-patching
measurement

T1 T2
T3

T4

T5

+ or or
+

GAME
GAME MOVIE

010 000

Figure 1. An illustration of the experimental design. After pre-patching ocular dominance plasticity measurement (baseline), partici-
pants underwent 2.5 h of monocular patching with a translucent patch for their dominant eyes. During the patching stage, partici-
pants were asked to undertake a gaming task, i.e., playing action video games, watching action video game movies, or playing
non-action video games (three tasks on different days). We measured their ocular dominance again at 0, 3, 6, 9, and 30min (T1, T2,
T3, T4, T5) after the removal of the patch. Note that the sound was turned off when participants were watching action video game
movies.
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Data analysis
We grouped the task of playing action video games and

that of watching action video game playing into
Comparison 1, and the task of playing action video games
and that of playing non-action video games into
Comparison 2. The ocular dominance changes at different
time sessions after monocular patching were compared
by Kruskal–Wallis H tests. The results of different tasks in
Comparison 1 and Comparison 2, respectively, were
compared by repeated-measures ANOVA. To further in-
vestigate the magnitude of the effect over time, we calcu-
lated the areal measures [area under curve (AUC)] from
0min to 9min (i.e., T1 to T4 in Fig. 1) and performed paired
samples t tests for further analysis. The level of signifi-
cance was set as p, 0.05. All statistical analysis was
completed in SPSS 23.0 (IBM Corporation).

Results
Comparison 1: playing action video games versus
watching action video gamemovies
In Comparison 1, we compare the change in ocular

dominance of action video game play during monocular

patching with that of action video game movie watching.
As shown in Figure 3A, participants’ change of ocular
dominance (i.e., perceived phase change from the pre-
patching baseline) was negative after monocular patch-
ing, indicating that the patched eye became stronger in
both conditions. Kruskal–Wallis H tests also showed that
the perceived phase changes were significantly different
between different time sessions for both playing action
video games (H(5) = 39.498, p,0.001) and watching ac-
tion video game movies (H(5) = 42.798, p,0.001) condi-
tions. A repeated-measures ANOVA further showed that
the perceived phase was not significantly different
between the two viewing conditions (F(1,11) = 1.122, p=
0.312). To better show the difference between the two
viewing conditions in different individuals, we also calcu-
lated the areal measures (AUC) within the first 10min (i.e.,
T1 to T4 in Fig. 1) and plotted the results in Figure 3B. The
average effect (i.e., AUC) for the two conditions were
63.34 6676 38.71 312 (playing action video games,
mean 6 SD) and 73.470836 31.04102 (watching action
video game movies, mean 6 SD). Overall there was no
significant difference between the two viewing conditions
(t(11) = �0.813, p=0.433; two-tailed paired samples t
test).
Through a power analysis, we found that the effect size

of Comparison 1 was 0.288542, and the sample size
needed for power = 80% and significance level = 0.05
would be at least 97. Therefore, we conclude that the dif-
ference between the two tasks, if any, would be very
small.

Comparison 2: playing action video games versus
playing non-action video games
In Comparison 2, we compare the change in ocular dom-

inance of participants playing action video games during
monocular patching with that of playing non-action video
games. As shown in Figure 4A, participants’ perceived
phase change from baseline was negative after monocular
patching, indicating that the patched eye became stronger
in both conditions. Kruskal–Wallis H tests also showed that
the perceived phase changes were significantly different
between different time sessions for both playing action
video games (H(5) = 39.498, p, 0.001) and playing non-ac-
tion video games (H(5) = 37.250, p, 0.001) conditions.
ANOVA further showed that the perceived phase was not
significantly different between the two viewing conditions
(F(1,11) = 0.004, p=0.951). To better show the difference be-
tween the two viewing conditions in different individuals,
we calculated the areal measures (AUC) within the first
10min (i.e., T1 to T4 in Fig. 1) and plotted the results in
Figure 4B. The average effect (i.e., AUC) for the two condi-
tions were 63.346676 38.71312 (playing action video
games, mean 6 SD) and 62.501676 35.82488 (playing
non-action video game movies, mean6 SD). There was no
significant difference between the two viewing conditions
(t(11) = 0.092, p=0.928; two-tailed paired samples t test).
Through a power analysis, we found that the effect size

of Comparison 2 was 0.022656, and the sample size
needed for power = 80% and significance level = 0.05

Figure 2. An illustration of the binocular phase combination par-
adigm. In each trial, participants were first asked to finish an eye
alignment (fusion) task and then a binocular phase combination
task, where two horizontal gratings with the same spatial fre-
quency (0.46 c/d) and opposite phase shifts from the center of
the screen (�22.5° and 122.5°) were dichoptically presented to
their two eyes. Participants perceived the two stimuli as one
fused horizontal grating, the perceived phase of which was de-
termined by the relative strength of the two eyes’ contributions
to the binocular viewing. Stimulus contrast was set as 100% for
the non-dominant eye and d � 100% (0 � d � 1) for the other
eye. d is the interocular contrast ratio close to individuals’ bal-
ance point (i.e., at which the binocular perceived phase was
close to zero degrees), which was selected based on their per-
formance from practice trials. Participants were asked to move a
flanking reference line to the middle of the central dark stripe of
the fused grating. The position of the reference line was then
converted into the perceived phase for each participant. To
avoid a potential positional bias, two configurations were given:
in configuration 1, the phase was set as �22.5° for the dominant
eye and 122.5° for the non-dominant eye; in configuration 2, the
phase was set reversely. This was repeated eight times in a typi-
cal test session, which would last ;3min. After all the sixteen tri-
als were performed, an average perceived phase was calculated.
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would be at least 15,294. Therefore, we conclude that
there was no difference between these two tasks.

Does gender play a role in the results?
One interesting finding in the literature is that male par-

ticipants might have better performance than females in
spatial cognition, while females instead showed larger im-
provements on the same tasks after action video game
training (Feng et al., 2007). To clarify the concern, we clas-
sified our participants into two subgroups according to
their gender (i.e., male vs female; Fig. 5), and analyzed the
AUC ratio between the two tasks in both Comparison 1
and Comparison 2. We found no significant difference be-
tween the two subgroups [Comparison 1: t(10) = �0.074,

p=0.942 (Fig. 5A); Comparison 2: t(10) = 0.405, p=0.694
(Fig. 5B)]. These results suggest that the factor of gender
had no role in our experiments.

Discussion
In this study, we investigated whether action video

gaming during monocular patching could influence ocular
dominance plasticity in visually normal adults. In
Comparison 1, we assessed whether there would be a dif-
ference in short-term monocular patching induced visual
plasticity between two conditions: during monocular
patching subjects were either playing (i.e., active attend-
ance) or watching (i.e., passive attendance) action video
games. Since the visual stimuli in these two conditions
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Figure 4. Playing action video games versus playing non-action video games. A, The shift in ocular dominance (i.e., perceived
phase change) after monocular patching. Circles represent results of playing action video games during the monocular patching
stage; triangles represent results of playing non-action video games during the monocular patching stage. Error bars represent SEs
across participants. The dark area suggests a shift of ocular dominance in favor of the patched eye. B, Areal measures (AUC) within
the first 10min (i.e., T1 to T4 in Fig. 1). The dark area represents a stronger accumulative effect of playing action video games. The
green square represents the average results. Error bars represent SEs across participants.
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Figure 3. Playing action video games versus watching action video game movies. A, The shift in ocular dominance (i.e., per-
ceived phase change) after monocular patching. Circles represent results of playing action video games during the monocu-
lar patching stage; squares represent the results of watching action video game movies during the monocular patching
stage. Error bars represent SEs across participants. The dark area suggests a shift of ocular dominance in favor of the
patched eye. B, Areal measures (AUC) within the first 10min (i.e., T1 to T4 in Fig. 1). The dark area represents a stronger ac-
cumulative effect of playing action video games. The blue square represents the average results. Error bars represent SEs
across participants.
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were the same, any difference in short-term monocular
patching induced visual plasticity would be due to the
outcome of playing action video games. In Comparison 2,
we investigated whether there would be a difference in
short-term monocular patching induced visual plasticity
between when observers were playing either action or
non-action video games. A typical action video game is
more perceptually demanding and difficult to perform
than a non-action video game. Because of this difference,
we had hypothesized that action video gaming would
exert a larger influence on visual plasticity. However, we
found that patching with playing action video games did
not enhance or eliminate the magnitude of ocular domi-
nance change in either Comparison 1 or Comparison 2.
Eye fatigue was not monitored in this experiment; how-
ever, some participants did report eye fatigue after play-
ing action video games while others did not.
As a novel form of visual plasticity, short-term ocular

dominance plasticity, with its effect on binocular balance
and potential for amblyopic treatment (Zhou et al., 2013b,
2019; Lunghi et al., 2019), has drawn the attention of
many scientists in the field of vision science. However, the
change is transient, as opposed to the permanence of the
neuroplastic changes that occur from long-term monocu-
lar deprivation during the critical period (Daw, 2014).
Recent investigators have postulated that that these two
forms of neural plasticity in the visual system are related.
For instance, Lunghi et al. (2016) argued that the plasticity
induced by short-term monocular patching could predict
that induced by long-term patching, thus suggesting a
similar neural mechanism for the two types of plasticity.
Sauvan et al. (2019) reported that short-term monocular
patching could enhance the effect of long-term plasticity,
albeit not significantly. In addition, action video gaming
has been reported to improve perceptual performance on
visual tasks after a few weeks or months of visual training
(Levi and Li, 2009; Li et al., 2013; Vedamurthy et al., 2015;
Gambacorta et al., 2018). This form of improvement is
called perceptual learning. If action video gaming could
enhance changes in visual plasticity, it could be employed
in concert with monocular patching and monocular

training to improve the visual acuity as well as binocular
balance in patients with poor vision and other visual disor-
ders such as amblyopia (Gambacorta et al., 2018).
The finding is interesting that there is no significant dif-

ference between action video game play and non-action
video game play in our participants in terms of short-term
ocular dominance plasticity. It is worth noting that in a
previous study, Li and colleagues demonstrated a larger
improvement in contrast sensitivity with action video
game training than with non-action video game training in
visually normal adults (Li et al., 2009). It is likely that such
an improvement reflects a change in monocular sensitivity
in the early cortical pathway (e.g., V1) and is relevant to
perceptual learning. Therefore, the inconsistency be-
tween our study and Li and colleagues’ might be due to
different neural mechanisms being responsible for per-
ceptual learning and monocular patching-induced plastic-
ity. Perceptual learning relies on repeated intensively
visual training and is thought to involve the properties (i.e.,
peak tuning and signal/noise) of individual cortical neu-
rons before binocular summation (Hua et al., 2010; Ren et
al., 2016), whereas monocular patching-induced plasticity
relies on short-term visual deprivation and involves the in-
teractions between neurons receiving left and right eye in-
puts (Binda et al., 2018; Chadnova et al., 2017; Zhou et
al., 2015).
We had expected to see an enhancement of ocular

dominance change by action video game play for two rea-
sons. First, during patching, playing action video games
via the unpatched eye could recruit additional attentive
processes involving top-down feedback from higher vis-
ual areas (Gilbert and Li, 2013). If such attentional feed-
back modulated changes in ocular dominance, a low-
level phenomenon, the change in ocular dominance
would have increased. However, this was not the case in
our findings from Comparison 2. Hence, ocular domi-
nance plasticity seems to be determined by local low-
level, feedforward interactions in the primary visual
cortex. Second, cross-modal inputs have been shown to
affect visual plasticity (Iurilli et al., 2012; Ibrahim et al.,
2016; Teichert et al., 2018, 2019) by suppressing the early

A

Female
Gender

0

2

4

Male

n = 7 n = 5

A
U

C
 R

at
io

 
(P

A
V

G
 v

s 
W

A
V

G
)

vs

Female
Gender

0

2

4

Male

n = 7 n = 5

A
U

C
 R

at
io

 
(P

A
V

G
 v

s 
P

N
A

V
G

)

vs

B

+
+

GAME

+ GAME MOVIE

+
+

GAME

+
010 000

11

33

Figure 5. AUC ratio within the first 10min shown in subgroups of genders in Comparison 1 and Comparison 2. Each circle represents
the AUC ratio obtained from one participant. Boxes indicate the medians and the 25th and 75th percentiles of AUC ratio. The factor of
gender had no significant role in either Comparison 1 (t(10) = �0.074, p=0.942; A) or Comparison 2 (t(10) = 0.405, p=0.694; B).

Research Article: New Research 6 of 8

May/June 2020, 7(3) ENEURO.0006-20.2020 eNeuro.org



visual cortical activity in animals (Iurilli et al., 2012; Ibrahim
et al., 2016). Also, recent studies have revealed that non-
visual sensory deprivation can cross-modally restore
plasticity in the visual cortex in matured mice (Teichert et
al., 2018, 2019). Nevertheless, our results in the two
comparisons show that complex integrated stimulation
(e.g., auditory inputs and attentional engaging) seems to
exert no additional effect, compared with visual stimula-
tion alone (i.e., watching without hearing or playing),
on short-term ocular dominance plasticity in human adults.
Therefore, the neural mechanisms responsible for cross-
modal influences may not be involved in the neural plastic-
ity induced by short-term monocular patching. Another ex-
planation, however, is that the attentional engagement and
the visuo-auditory integration might have opposite effects
on short-term ocular dominance plasticity, which could
lead to a null effect as observed in our experiment. Future
studies may need to determine the separate effects of
these factors.
In fact, our finding that the complex integrated stimula-

tion may not play a significant role in short-term ocular
dominance plasticity is consistent with the ones from
other studies which demonstrate that only low-level areas
are locally involved in short-term ocular dominance plas-
ticity in human adults (Lunghi et al., 2015a,b; Chadnova et
al., 2017; Binda et al., 2018). To illustrate, an electrophysi-
ological study reports a change in the amplitude of the C1
component following patching, a phenomenon that has
been confirmed to be closely related to the activity of V1
(Lunghi et al., 2015a). There is also evidence that reduced
GABA concentration in V1 is highly correlated with the
perceptual boost of the patched eye (Lunghi et al.,
2015b). Furthermore, a recent fMRI study suggests a sig-
nificant impact on the neural coding at the level of V1 after
2 h of monocular contrast deprivation (Binda et al., 2018).
Our results, together with these previous reports, suggest
that the neural site of the ocular dominance plasticity from
monocular patching is local and resides within the early
cortical pathway.
In short, we found that action video gaming does not

impact short-term ocular dominance plasticity in visually
normal adults more than watching action video game
movies or playing non-action video games. Thus, com-
plex integrated stimulation, in contrast to visual stimula-
tion alone, may not play a significant role in this plasticity
in human adults. Our findings suggest the neural mecha-
nism responsible for short-term ocular dominance plastic-
ity might occur early in the cortical pathway.
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