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PURPOSE. Studies have reported different numbers of spatial frequency channels for
chromatic and achromatic vision. To resolve the difference, we performed factor analy-
sis, a multivariate modeling technique, on population data of achromatic and chromatic
sensitivity. In addition, we included resampling and visualization methods to evaluate
models from factor analysis. These routines are complex but widely useful. Therefore we
have archived our analysis routines by building smCSF, an open-source software package
in R (https://smin95.github.io/dataviz/).

METHODS. Data of 103 normally-sighted adults were analyzed. They included blue-yellow,
red-green, and achromatic contrast sensitivity. To obtain the confidence interval of
relevant statistical parameters, factor analysis was performed using a resampling method.
Then exploratory models were developed. We then performed model selections by fitting
them against the empirical data and quantifying the quality of the fits.

RESULTS. During the exploratory factor analysis, different statistical tests supported differ-
ent factor models. These could partially be reasons for why there have been conflicting
reports. However, after the confirmatory analysis, we found that a model that included
two spatial channels was adequate to approximate the chromatic sensitivity data, whereas
that with three channels was so for the achromatic sensitivity data.

CONCLUSIONS. Our findings provide novel insights about the spatial channels for chromatic
and achromatic contrast sensitivity from population data. Also, the analysis and visualiza-
tion routines have been archived in a computational package to boost the transparency
and replicability of science.

Keywords: contrast sensitivity, factor analysis, color vision, computational modeling,
spatial vision

Factor analysis is a century-old method that aims to
describe the relationships between variables from a high

dimensional dataset.1 It involves retaining the least possible
number of dimensions to approximate the empirical data.
This dimension is often referred to as a factor. For exam-
ple, in psychology, general intelligence (or g) is an intan-
gible quantity or value that shapes the human mind across
different levels; this is an example of a model that has one
latent (or implicit) factor that affects various response vari-
ables, such as mathematical aptitude,musicianship and read-
ing comprehension. In the case of human spatial vision,
a factor can govern how perception can co-vary across a
certain class of stimulus but not another. In vision research,
the term channel was initially used to vaguely refer a neuro-
physiological mechanism that underlies a particular visual
function, such as contrast sensitivity.2 However, physiologi-
cal studies in cats and monkeys began to support the exis-
tence of channels for visual perception,3 demonstrating that
the term was not merely an abstract reference to what could
occur in the visual system but an actuality. In this article,
we will use the term channel to refer to a common mecha-

nism that subserves a particular visual function, and employ
factor analysis to gain more insights about how these chan-
nels operate in human visual system.

Humans’ window of visibility can be illustrated as the
contrast sensitivity function (CSF). It is often measured
by logarithmically modulating the contrast and spatial
frequency of a sinusoidal grating.4 Contrast refers to the
difference between brightest and darkest parts of an image.
Spatial frequency indicates whether an image is fine or
coarse (high or low spatial frequency). Typically, the CSF
has an asymmetrical and inverted U-shape with a peak at a
medium spatial frequency. In the past, studies using adap-
tation and masking paradigms have attempted to estimate
the number of contrast spatial channels in the human visual
system.5,6 However, studies using different psychophysical
methods have reported different numbers of spatial chan-
nels.7–10 Factor analysis is an alternative solution to indi-
rectly derive the spatial channel by evaluating the sensitiv-
ity data’s covariance,11 which can cause a joint variability
of sensitivity across a range of spatial frequency but not
others.
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Studies using factor analysis have reported the existence
of multiple spatial frequency channels (i.e., factors) that
are responsible for contrast sensitivity at different ranges
of spatial frequency in both infants and adults.11–20 They
have aimed to confirm the findings of psychophysical studies
that directly analyzed data (but not covariance).21,22 Specif-
ically, Peterzell and his colleagues14,15,19 have shown that
there is one channel above 1 c/deg (Wilson A channel) and
one below 1 c/deg (Wilson B channel) with a possibly third
factor that accounts for covariance of sensitivity driven by
optics at higher frequencies ( >2.25 c/deg).17,23 However,
factor analysis can yield discrepant results depending on
differences in methodologies24 or sample sizes because it
can be easily distorted by skewed values or outliers.25–27

For example, the range of tested spatial frequency from the
sensitivity data (i.e., methods for data collection) and differ-
ent criteria for factor retention can both introduce different
results.24 Sometimes, the standard criteria must be adjusted
depending on the local dataset.12,15,28

Correctly estimating the number of factors is important.
However, differences in criteria for factor retention and
sample sizes can yield different numbers of factors.24,29 First,
the likelihood ratio test can support one model over another
with a statistical significance, such as the p-value. However,
it tends to overestimate the number of factors.30 Another
method is the Guttman criterion,31 which selects factors with
eigenvalues larger than 1. Eigenvalue refers to a propor-
tion of variance that is explained by a factor. The higher
the eigenvalue for a factor, the larger the factor explains
the variance of the data. This method, however, has been
shown to be problematic because the exact eigenvalue can
vary depending on the sample.25 For instance, a factor’s
eigenvalue can exceed 1 in one sample but not in another,
resulting in different number of factors depending on the
sample. In vision research, factors that show systematic
patterns in their loadings are qualitatively retained.15,19,28

Also, a method that has become popular across fields is
parallel analysis, which includes factors when the associ-
ated eigenvalue for each factor from empirical data exceeds
that from randomly generated data.25 In other words, the
empirical eigenvalue must be higher than the random eigen-
value. However, statistical value such as factor loadings and
eigenvalues themselves can vary from sample-to-sample and
have a range of variability both in large and small samples.
Therefore calculating the range of uncertainty, such as the
confidence interval of eigenvalues, can be useful to compare
those from a null distribution. Therefore these methods with-
out a resampling method to compute the range of uncer-
tainty are all prone to the variability of the eigenvalue or
factor loadings, and can support different models depend-
ing on the local dataset.

These tools are exploratory measures of factor analy-
sis that can be used to develop a potential model (i.e.,
factor model). However, their support does not confirm
whether the fit of the factor model is adequate. The stan-
dard approach for confirmatory factor analysis requires a
sample size of at least 200.27 In cases of questionnaires
from psychometrics, a large sample size can be achieved
and clear conclusions from a confirmatory factor analysis
can be formulated because one test can record responses for
multiple response variables at once.32 However, in ophthal-
mology and vision research where one datum is a summa-
rized data of multiple trials, there is no systematic and
uniform confirmatory approach to determine the number of
factors in a model because meeting the requirements for a

standard confirmatory factor analysis is not feasible. Fortu-
nately, contrast sensitivity data can be visualized, and the
fit of the factor model can be visually inspected against the
experimental data. With modern tools, the fitted data from
the factor model can be plotted and stochastic (random)
methods can be implemented without consuming excessive
computer memory. In other words, in vision research and
ophthalmology, because of contemporary tools for factor
analysis and availability of diverse software packages, it has
now become possible to confirm whether a given factor
model is appropriate even if the data do not meet the stan-
dard requirements for confirmatory factor analysis.

The aim of our study was twofold. First, we wanted to
resolve the conflicting reports that suggest different numb-
ers of spatial frequency channels in humans. To do so, we
initially used standard routines for factor analysis to derive
a factor model. These tests supported different models. So,
we used a series of statistical tests for model comparisons,
such as the likelihood ratio test and examination of R2 for
the model fit. Moreover, we applied a statistical method that
generates a range of error for eigenvalues from bootstrap
resampling to derive the most appropriate factor model.
Bootstrapping is a stochastic procedure of resampling data
with replacement,33 which is repeated numerous times. It
can be used to generate the range of error, such as the confi-
dence interval, of statistical values that can be only collected
once from the raw data. Also, as a confirmatory measure,
we used a visualization method to inspect whether the fit of
the selected factor model was faithful to the experimental
data. Second, to promote reproducibility and replicability of
research practices in factor analysis for vision scientists and
ophthalmologists, we compiled our analysis and visualiza-
tion routines for contrast sensitivity data in an R package
smCSF (https://smin95.github.io/dataviz/: Chapters 13–16).

METHODS

This study used two published datasets, both of which
have been uploaded online (https://mvr.mcgill.ca/AlexR/
data_en.html). Datasets from 62 normally sighted observers
of Reynaud et al.,34 and 51 from Kim et al.35 were analyzed
separately. In both studies, the quick Contrast Sensitivity
Function (qCSF) method was used to measure the sensi-
tivity at various spatial frequencies.36,37 For each qCSF test,
there were 100 trials, and each test would take about eight
minutes.

Data From the Study of Kim et al.35

Data from the study of Kim et al.35 includes contrast
sensitivity of 51 adults with normal vision for red-green,
blue-yellow, and achromatic noise patterns. Noise gratings
were generated in the space domain by filtering white
noise by an oriented Gabor filter and were presented in
a 5° Gaussian window. Each measurement was performed
twice, and the values were then averaged across the two
repetitions. The color sensitivity data were obtained from
0.25 c/deg to 2.54 c/deg, whereas the achromatic data were
obtained from 0.25 c/deg to 9.57 c/deg.

Data From the Study of Reynaud et al.34

This is a dataset of contrast sensitivity for noise gratings
(same properties, but presented in a 10° window) from
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both dominant and non-dominant eyes of 52 adults.34 In our
computational study, only the data of the dominant eye’s
sensitivity was used because a preliminary analysis, using
the Kaiser-Meyer-Olkin test, revealed that the dataset was
more apt for factor analysis than that from the non-dominant
eye. The range of tested spatial frequencies was from 1 c/deg
to 14.16 c/deg.

Exploratory Factor Analysis

Factor analysis was performed using the software R with the
psych package’s fa function.38 Factor solutions underwent
the varimax rotation,39 which maximizes the variance of the
squared loadings and the interpretability of results from the
solutions.

Various methods were performed to estimate the number
of significant factors. First, we performed a traditional statis-
tical test for model comparisons, notably the χ2 likelihood
ratio test. It tests whether a model with more factors can fit
the model better than a simpler model with fewer factors
with a statistical significance. Next, the simple scree test
was used, a qualitative method that has been used in vision
research14,19 and involves locating where the plot “breaks”
into a flat line. The breaking point is noted as the boundary
between significant and insignificant factors. Third, factors
with loadings showing systematic patterns were kept. This
qualitative method has been used in previous psychophysi-
cal studies.19,28 For example, if a three-factor model is used
to derive the loading scores from factor analysis on a dataset
that supposedly has two factors, then the loading scores for
the third factor should not show meaningful pattern with
high values.

Furthermore, parallel analysis was performed by comput-
ing the eigenvalues from the empirical and randomly gener-
ated data matrix, both of which have the same size.25 The
95% confidence interval of the eigenvalues was obtained
using the resampling method (see the Appendix) to counter
against the potential variability of eigenvalues. Then, the
eigenvalues and their confidence intervals from empirical
and random data were visualized as the scree plot.40,41 The
factors whose confidence intervals of the eigenvalue from
the raw data do not overlap with those from factors from the
random data are deemed to be statistically significant. These
steps are compiled in the functions of the smCSF package
(see the Appendix).

Generating Predicted Values From the Model

To confirm whether the model from exploratory factor anal-
ysis was appropriate, we plotted the fitted values from
the model against the empirical data. The fitted values
were computed from weights, which could be calculated as
following:

β = X+y,

where β is the weight of each latent factor at each (each
spatial frequency) variable, X+ is the Moore-Penrose pseudo
inverse of the loadings for each factor, and y is the matrix
of the raw data (contrast sensitivity).42,43 By performing a
matrix multiplication between the coefficient weights β and
the matrix of the loadings, we computed the following fitted
value:

ŷ = X β,

where X refers to the loading scores from factor analysis
and ŷ refers to the fitted value of the sensitivity data. To
assess the quality of the fit, we calculated the coefficient of
determination (R2) between the fitted values from the factor
model and the experimental data.

Calculating the Tuning of Each Spatial Channel

The spatial frequency tuning of each factor channel was
estimated using the loadings from factor analysis using the
formula below11,19,44:

Channel contrast sensitivity of channelin

= Mean contrast sensitivity/abs
(
1/factorloadingsin

)1/Q

where the statistical factor loadings are from factor i at
spatial frequency n. The value of Q was set to 4 based on
earlier works.13,19 The derived sensitivity values were then
used to derive the qCSF parameters (see the Appendix) to
obtain the truncated log-parabola model of CSF so that the
smooth tuning function of each spatial channel could be
computed across the tested range of spatial frequency. This
analysis comes along with an assumption of the combination
rule, pointing that different spatial channels can combine to
influence contrast sensitivity.44 In addition, the derived sensi-
tivity values were fitted against Wilson’s model45 (Equation
1 in the previous study) to estimate the tuning of each statis-
tical factor.

RESULTS

Data of Kim et al.35: Chromatic and Achromatic
Sensitivity

Combined Factor Analysis. A factor analysis using
the combined dataset of all stimuli, including achromatic,
red-green and blue-yellow sensitivity data across all spatial
frequencies, was performed to examine whether the spatial
channels responsible for chromatic and achromatic vision
operate independently.16 These datasets were combined as
if the three sensitivity functions were part of a single matrix.
Specifically, the three datasets were concatenated one after
the other on the spatial frequency dimension. According
to the Kaiser-Meyer-Olkin test (most values > 0.6) and
Bartlett’s test for sphericity (P < 0.05), which is a test that
compares the identity matrix to the observed correlation
matrix, combined dataset was appropriate for factor anal-
ysis.

The scree plot was visualized to deduce the number of
factors that underlay the variance of the combined dataset.
According to the scree plot from Figure 1, there were five
factors whose eigenvalues were larger than 1, passing the
Guttman criterion. Also, parallel analysis revealed that five
factors would be sufficient for the combined dataset. On the
other hand, the simple scree test revealed that seven factors
were meaningful (see Fig. 1; red and brown points). Also,
six factors were found to be significant because they showed
loadings with systematic patterns.

In this article, loadings from five factors are listed in
the Table because more tests supported the five-factor model
as shown above. Factor loadings describe the correlation
between a specific spatial frequency (i.e., response variable)
and the factor of interest (ex. Factor 1). For instance, Factor 1
has high loadings for the red-green sensitivity data, indicat-
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FIGURE 1. Scree plot of combined data of achromatic and chromatic
sensitivity from the data of Kim et al.35 Five factors (red points)
had eigenvalues that are larger than 1, passing the Guttman Crite-
rion test. Seven factors passed the simple scree test (red and brown
points), a qualitative method to identify the factor where the eigen-
value decreases to near zero. Eigenvalue refers the measure of vari-
ance in the data that is explained by a particular factor.

ing that the data from red-green sensitivity are highly corre-
lated with each another but not to those from other stim-
uli types. In other words, the red-green sensitivity seems
to be processed independently by a separate mechanism.
In addition, if a pair of two spatial frequencies is strongly
correlated, then their loadings will be comparable. For exam-
ple, loadings from 0.25 c/deg to 0.94 c/deg in the red-green
sensitivity data are similar but not those from high spatial
frequencies. This implies that there is covariance among the
data at lower spatial frequencies but less so at higher spatial
frequencies.

Fortunately, the results from the five-factor solution are
highly interpretable. The first factor is concentrated on the
red-green contrast sensitivity data except at 2.54 c/deg. It
accounts for 20.5% of the total variance, which is not largely
different from those of other four factors, indicating that
there is no single factor that underlies all data. Factor 2
is mainly loaded onto achromatic sensitivity data at low
spatial frequencies (0.25 to 1.83 c/deg). It accounts for 19.1%

TABLE. Loading Scores of the Combined Dataset Above 0.5 With
the Exception of Fourth Factor’s 0.453 (*)

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

0.25 c/d – BY 0.913
0.35 c/d – BY 0.916
0.48 c/d – BY 0.869
0.68 c/d – BY 0.602 0.751
0.94 c/d – BY 0.782 0.576
1.31 c/d – BY 0.902
1.83 c/d – BY 0.958
2.54 c/d – BY 0.962
0.25 c/d – RG 0.804
0.35 c/d – RG 0.881
0.48 c/d – RG 0.940
0.68 c/d – RG 0.945
0.94 c/d – RG 0.890
1.31 c/d – RG 0.771
1.83 c/d – RG 0.601
2.54 c/d – RG 0.453*
0.25 c/d – Ach 0.633
0.35 c/d – Ach 0.783
0.48 c/d – Ach 0.881
0.68 c/d – Ach 0.935
0.94 c/d – Ach 0.935
1.31 c/d – Ach 0.851
1.83 c/d – Ach 0.680 0.704
2.54 c/d – Ach 0.860
3.54 c/d – Ach 0.937
4.93 c/d – Ach 0.936
6.87 c/d – Ach 0.850
9.57 c/d – Ach 0.709
Proportion of variance 0.205 0.191 0.175 0.165 0.140
Cumulative variance 0.205 0.396 0.571 0.735 0.876

Different factors can possibly represent different spatial chan-
nels.

of the variance. Factor 3 accounts for 17.5% of the vari-
ance and mainly loads to achromatic sensitivity data at mid-
to-high spatial frequencies (1.83 c/deg to 9.57 c/deg). We
can infer from these results that there are separate chan-
nels for low and high spatial frequencies for achromatic
sensitivity. However, upon a closer inspection, we can see
that the loadings have a wide range (0.6 to 0.9) for achro-
matic sensitivity from 0.25 c/deg to 1.83 c/deg even if they

0.0

2.5

5.0

1 2 3 4 5 6 7 8
Factor

Ei
ge

nv
al

ue

Data
Random

A

0

2

4

6

1 2 3 4 5 6 7 8
Factor

Data
Random

B

0.0

2.5

5.0

7.5

10.0

1 2 3 4 5 6 7 8 9 10 11 12
Factor

Data
Random

CBlue-yellow sensitivity Red-green sensitivity Achromatic sensitivity

FIGURE 2. Eigenvalues with their range of error (95% confidence intervals) for the data of contrast sensitivity from blue-yellow (A), red-green
(B), and achromatic stimuli (C). Darker shades indicate eigenvalues from the dataset. Lighter shades indicate results from random sampling
in parallel analysis. In the parallel analysis, the Data and Random curves intersect at the third factor for all three stimuli, supporting a
two-factor model.
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FIGURE 3. Model fit against the empirical data. The first column represents one-factor models. The second column represents two-factor
models. The third column represents three-factor models. (A) Blue-yellow sensitivity data between 0.25 c/deg and 2.54 c/deg. (B) Red-green
sensitivity data between 0.25 c/deg and 2.54 c/deg. (C) Achromatic sensitivity data between 0.25 c/deg and 9.57 c/deg. Error bars represent
standard deviations across subjects.

are all concentrated on the second factor. This wide range
of the loadings could indicate that multiple factors could
account for the covariance of the achromatic data in this
range of spatial frequency, thereby warranting a separate
factor analysis. Factor 4 accounts for an additional 16.5% of
the variance and is mainly loaded onto blue-yellow sensi-
tivity data at spatial frequencies ranging from 0.68 c/deg
to 2.54 c/deg. The range of the loadings is broad (0.6 to

0.96). Last, Factor 5 accounts for 14% of the total variance
and is primarily responsible for the variance of blue-yellow
sensitivity data at low spatial frequencies (0.25 c/deg to
0.94 c/deg). We can deduce that there are separate chan-
nels for low and medium spatial frequencies in contrast
sensitivity for blue-yellow stimuli. In short, it seems that
no factor is shared among separate classes of the visual
stimulus.
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FIGURE 4. Scree plot for the data of Reynaud et al.34 Eigenvalue
with its range of variability (95% confidence intervals) for each
factor is visually illustrated. The parallel analysis revealed that two-
factor model might be adequate to describe the empirical data.

The cumulative proportion of variance that are explained
by the five factors is 87.6%, indicating that no other factors
are necessary to be included. It seems that the mech-
anisms of visual processing for these three classes are
unique. Surprisingly, we see that one factor is enough to
account for the data of red-green sensitivity. This could
open up two possibilities. First, there could be a single
spatial-frequency channel for red-green sensitivity. Second,
the difference brought by the multiple factors in red-green
sensitivity could be more subtle than those from achro-
matic and blue-yellow sensitivity, thereby making it diffi-
cult for the combined factor analysis to detect. The wide
range of loadings supports the second possibility. In sections
below, we will perform factor analysis for each class of
visual stimulus so that we can analyze the data upon closer
inspection.

Exploratory Factor Analysis for Each Class
of Stimulus. Exploratory factor analysis was separately
performed for each class of visual stimulus to develop a
preliminary factor model. According to the factor analytic
results from blue-yellow data (see Fig. 2A), the confidence
intervals of the eigenvalues for the first two factors did not
overlap with those of the first two factors from the random
data (see Fig. 2A). The scree test supported two factors
because the scree plot “broke” between the second and
third factor. Also, two factors showed loadings with system-
atic patterns but not others, supporting a two-factor model.
However, the likelihood ratio test supported the three-factor
model (P < 0.05). In sum, most methods supported the two-
factor model but with the exception from the likelihood ratio
test.

Next, factor analytic results were used to plot the eigen-
values of factors and evaluate their loadings from red-
green sensitivity data. The scree plot broke between the
second and third factor, revealing that a two-factor model
is adequate (see Fig. 2B). Also, the confidence intervals of
the eigenvalue associated with the two factors did not over-
lap between data and randomly generated data confirming
this observation (Fig. 2B). Furthermore, loadings from two
factors exhibited systematic relationships, whereas those
from others were random. However, the likelihood ratio test

supported the three-factor model (P < 0.05). As was the case
with the blue-yellow sensitivity data, the analyses yielded
contradictory results regarding which model is most appro-
priate.

Finally, the achromatic sensitivity data were examined
in a similar fashion. The breaking point of the scree plot
was between the third and fourth factors, supporting the
three-factor model (Fig. 2C). Loadings from three factors
showed systematic patterns but not from subsequent factors.
However, parallel analysis and the confidence intervals of
the eigenvalues from resampling revealed that two factors
were significant (Fig. 2C). Also, the likelihood ratio test
supported the three-factor model. The factor analytic results
from the achromatic data demonstrate a strong example of
inconsistent results from different methods that estimate the
number of factors.

Together, in light of our findings, factor analysis yielded
mixed results regarding which model best describes the data
across all three classes of the visual stimuli. For instance,
analyses that assessed the quality of the model based on
eigenvalues supported the two-factor model, whereas the
likelihood ratio test supported the three-factor model with
a statistical significance. These results demonstrate that
even with a sample size of 51 with multiple experimen-
tal conditions, where each datum represents a summarized
value of 100 trials, developing an appropriate model using
exploratory factor analysis is not a straightforward process
that leads to a clear, unequivocal result.

Are Spatial Channels Necessary To Preserve the
Shape of the CSF?. In this section, we examined whether
the presence of increasingly numerous channels could deter-
mine the shape of the CSF. To do so, we generated a model
fit (i.e., prediction curve) based on the factor scores of each
observer. The matrix of the factor loadings and the matrix
of the raw data were multiplied (see Methods) to obtain
the fitted values. Then, we plotted the average and its stan-
dard deviation of the fitted data for each model and stim-
ulus category (see Fig. 3). To begin with, both chromatic
and achromatic sensitivity curves seem to require multiple
spatial channels to capture the typical asymmetry and the
inverted U-shape of the CSF along the log x-axis. We could
observe from the first column (i) of Figure 3 that, when there
is only one spatial frequency channel in the model, this fitted
function does not capture the asymmetrical and inverted-
U shape of the CSF, illustrating that one-factor model is
inadequate.

However, for chromatic sensitivity (rows A and B
in Fig. 3), the fitted functions from two- and three-factor
models capture the true asymmetrical and inverted-U shape
of the empirical curve. The third factor only explained 2%
and 5%, respectively, of the total variance for blue-yellow and
red-green sensitivity, suggesting that the third factor does
not significantly improve the fit of the model. In addition,
the distributions of R2 for both three-factor models ranged
from 0.95 to 1; this range is very narrow and high, demon-
strating that the three-factor model is possibly overfitting the
data.

However, there seems to be a considerable difference
in the quality of the model fit between two- and three-
factor models in the achromatic data. In fact, the first
two factors of the three-factor model for the achromatic
data explained 75% of the variance, and the third factor
explained 25% of the total variance, demonstrating its impor-
tance. This would argue for the existence of 3 channels
in the larger spatial frequency range which was tested for
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achromatic sensitivity (0.25 c/deg to 9.57 c/deg), in accor-
dance with the previous likelihood ratio test but in contra-
diction with parallel analyses and the resampling method
we previously performed. So, to reappraise the number
of channels for achromatic spatial vision, we decided to
replicate the analysis using a different dataset of achro-
matic sensitivity from the study of Reynaud et al.,34 but
with a different range of spatial frequency from 1 c/deg to
14.16 c/deg.

Data of Reynaud et al.34: Achromatic Sensitivity
Above 1 c/deg

Factor analysis using the achromatic data of Kim et al.35

revealed mixed results regarding which model is most
appropriate. Therefore, we analyzed the achromatic data
of the study by Reynaud et al.,34 who tested 52 normally-
sighted adults; this dataset contains tested spatial frequen-
cies between 1 c/deg and 14.16 c/deg. Using the dataset
would enable us to examine whether the inclusion of only

one spatial channel in the factor model at a frequency range
above 1 c/deg is adequate. First, the scree test (Fig. 4) had
a breaking point between the second and third factors,
indicating that a two-factor model is sufficient. The confi-
dence intervals of the eigenvalues from two factors were
also significant. Parallel analysis also supported a two-factor
model. The likelihood ratio test endorsed the two-factor
model. Furthermore, loadings from two factors showed
meaningful patterns. To summarize, the different tests unan-
imously supported the two-factor model for achromatic
vision above 1 c/deg.

Several observations can be made from Figure 5, where
the loadings of the two factors, fit of the two-factor model
and the distribution of R2 across 52 observers are shown.
First, the loading scores (see Fig. 5A) demonstrate that the
two spatial channels intersect at about 3 c/deg, which is
approximately where the peak of the achromatic CSF is
located. We also see that the two-factor model can faith-
fully reproduce the achromatic curve at a range of spatial
frequency above 1 c/deg (Fig. 5B). The spatial tunings of
the two channels are shown in Figure 5C, indicating that the
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intersection between the two spatial channels is at about
3.11 c/deg. The distribution of R2 (mostly above 0.8) also
indicates that the model-fit is appropriate (Fig. 5C). However,
there remains a possibility that a third spatial channel might
operate. To address this issue, we included a third factor
in the model. However, it contributed to only 4% of total
variance, whereas the two primary factors explained 96%
of variance. Therefore we can conclude that there are two
frequency-tuned statistical factors beyond 1 c/deg for achro-
matic sensitivity.

Revisiting the Data of Kim et al.35 After Model
Selections

Now that we have established that there are most likely two
statistical factors above 1 c/d for achromatic sensitivity, we
can perform a confirmatory analysis of the data of Kim et
al.35 with the three channels that are necessary for achro-
matic sensitivity in the range 0.25 c/deg to 9.57 c/deg. For
chromatic stimuli, together with the visualization and resam-
pling methods, our results reveal that a two-factor model
adequately describes the contrast sensitivity for chromatic
stimulus, be it red-green or blue-yellow. The loading scores
of the two spatial channels across the two chromatic classes

intersect at about 0.7 to 1 c/deg [Fig. 6A(i) and (ii)]. To
precisely capture the point of intersection, we plotted the
tuning of each spatial channel [Fig. 6B(i) and (ii)] by fitting
the data using the loading scores with the qCSF model.
The intersection of spatial frequency between the two chan-
nels were 0.81 and 0.91 for blue-yellow and red-green stim-
uli, respectively. Indeed, the points of intersection are close
to where the peaks of the sensitivity functions are shown
in Figure 6C(i) and (ii). Also, the shape of the model CSF
accurately fits the data shown in Figure 6C(i) and (ii). Addi-
tionally, the distribution of the coefficient of determination
(R2) of the two-factor model for these two stimuli types also
shows that the model faithfully describes the data shown
in Figure 6D(i) and (ii). Because the range of 0.25 c/deg
and 2.54 c/deg encompasses entire shape of the CSF, there
might be no need for another one beyond the spatial two
channels. Therefore our results show that the likelihood
ratio test, which supported the three-factor model, overesti-
mated the number of factors in our chromatic data. For the
blue-yellow data, the fit from one-factor model (Fig. 3) and
the tuning of the second channel [pink line in Fig. 6B(i)]
have similar shapes and ranges of sensitivity, indicating that
one-factor model from Figure 3 might represent the second
spatial channel. However, for the red-green data, the fit from
one-factor model (Fig. 3) has a higher range of sensitivity
than the second spatial channel [pink line in Fig. 6B(ii)],
suggesting that the one-factor model was merely a coarse
attempt of the factor analysis to summarize the original data
rather than a direct representation of the second spatial
channel.

With regard to the achromatic data, the loading scores
of the three-factor model for the achromatic data show
that there is one spatial channel prior to the peak of the
CSF, one at the peak, and one beyond the peak [Figs.
6A(iii) and 6C(iii)]. In fact, the intersections of the load-
ing scores represent the boundaries of the three spatial
channels, which were found to be at 0.97 and 3.37 c/deg
[Fig. 6B(iii)]. Interestingly, the first intersection point near
1 c/d is also where the achromatic peak begins, whereas
the second intersection point after 3 c/d represents the
starting point of the function’s decline. Also, the intersec-
tion of the second and third spatial channels is similarly
located to that of the two channels from Reynaud et al.34

(see Fig. 5). Also, the histogram of R2 indicates that the
three-factor model has an excellent model-fit to the empir-
ical data [Fig. 6D(iii)]. Together, these findings suggest that
there are three spatial-frequency-tuned statistical factors in
the range of 0.25 c/deg to 9.54 c/deg for achromatic contrast
sensitivity.

Finally, we compared our statistical factors to the chan-
nels that were determined behaviorally in a masking experi-
ment by Wilson and Gelb.45 We fitted the derived sensitivity
values from each statistical factor against Wilson’s spatial
model, which assumes that there are separate mechanisms
for processing contrast sensitivity across different ranges of
spatial frequency (Fig. 7). The lowest spatial frequency range
is represented by the Wilson A channel (Fig. 7A). The mid
and higher ranges are represented by Wilson B and C chan-
nels, respectively (Figs. 7B, 7C). The agreement between
our extrapolated sensitivity from each statistical factor and
the Wilson channels demonstrate that Wilson’s model can
reliably capture the tuning functions of the three statisti-
cal factors. The three fits resemble faithfully to those in
previous studies11 (compare Fig. 7D vs. Fig. 3 in Peterzell’s
report11). For instance, the peak of Wilson A channel is
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close to 1 c/deg, whereas that of Wilson B channel is above
1 c/deg. Our findings from factor analysis also support
Wilson’s model and earlier studies11,44 that describe contrast
sensitivity data using covariance.

DISCUSSION

Earlier, we alluded to the fact that factor analytic results
could be different depending on the methodologies of the
analysis method and data collection, as well as differences
in local samples. Here, we demonstrated with our data
that results from factor analysis using empirical data can
be equivocal because different statistical tests and meth-
ods of model selections supported different models, requir-
ing us to apply a resampling method in the exploratory
approach and visualization in the confirmatory measure. The
reason why exploratory measures were not able to collec-
tively support a single model could be due to the limited
number of response variables in our dataset, such as spatial
frequency. In fact, a latent model from exploratory factor
analysis can be tested using confirmatory factor analysis,
which requires a sample size of at least 200.27,32 Confir-
matory factor analysis is often used in psychometrics that
rely on questionnaires for data analysis, where each ques-
tion can be considered a response variable and a cluster
of questions can be part of a latent factor.32 In such a
case, there can be as many as 50 or more questions with a
sample size above 300. This is impractical for psychophysical
experiments, along with the fact that data at each response
variable could be a summary measure of many trials.46

However, as opposed to in psychometrics, the model from
psychophysical studies can be fitted against experimental
data visually, enabling us to estimate the number of factors
clearly.

Our results from factor analysis using resampling and
visualization methods revealed that two spatial channels
were necessary to model blue-yellow and red-green sensitiv-
ity, whereas three channels were required to model achro-
matic sensitivity. Also, they showed that blue-yellow, red-
green and achromatic channels were independent. Indeed,
our results agree to findings of previous studies.15,19 The
number of channels was found to be different between
achromatic and chromatic vision for two reasons. First, the
shapes of achromatic and chromatic data are different. The
chromatic sensitivity function has the lowpass shape, peak-
ing (0.5 c/deg) and falling off at a lower spatial frequency,47

whereas the achromatic sensitivity function has a bandpass
shape, peaking at about 2-3 c/deg and falling off at a higher
frequency.47,48 Second, the range of tested spatial frequency
for the chromatic sensitivity was narrower than that of the
achromatic sensitivity in our dataset, requiring us to consider
the possibility that a third spatial channel might still exist for
chromatic sensitivity at beyond 3 c/deg (see Fig. 6). However,
in light of the difference in the shapes of the chromatic
(lowpass) and achromatic (bandpass) sensitivity functions, it
is possible that the minimal sensitivity levels at higher spatial
frequencies (beyond 4 c/d) for chromatic stimuli might mini-
mize the role of the potential third spatial channel even if
it operates, reducing its significance and impact on visual
perception.

The shape of the CSF when there was an inadequate
number of spatial channels in the factor model was inaccu-
rate (i.e., roughly symmetrical) in all classes of visual stim-
uli along the logarithmic axis of spatial frequency, failing to

approximate the original data. Conversely, the shape of the
fitted curve when there was an adequate number of chan-
nels in the factor model was similar to that of the empir-
ical data with an asymmetrical and inverted-U shape. For
chromatic vision (see Fig. 6), the fits of inadequate models
could be a reflection of one spatial channel that is more
tuned for higher spatial frequency. However, for achromatic
vision, we found that the fit from a one-factor model [ gray
line in Fig. 3C(i)] was not representative of a single spatial
channel. This could because it was a coarse attempt of factor
analysis to reduce the original data into one factor rather
than to capture a single spatial channel, demonstrating that
at times statistical factor is not equivalent to spatial channel.

The loading scores and the tuning functions (Figs. 6, 7)
provide additional insights about spatial vision. For chro-
matic sensitivity, the intersections of the loadings (and the
tuning functions) from the factor models were near the
peak of the CSFs. This finding indicates that two spatial
channels were active at the peak. It supports the combi-
nation rule, which assumes that multiple spatial channels
combine to determine the shape of the contrast sensitiv-
ity function.12,13,15 For achromatic sensitivity, the loadings
from the three-factor model intersected at about 1 and 3
c/deg [see Fig. 6 B(iii)], surrounding the achromatic peak.
Following the same interpretation, we can speculate that
three spatial channels were active near the peak between 1
and 3 c/deg. Interestingly, the first two channels from our
achromatic three-factor model are similarly positioned as
Wilson A and B channels from Peterzell et al.,11,14,15,19,20,44,49

despite some differences in where the spatial channels inter-
sect, which can be attributed to sample-to-sample variabil-
ity. Interestingly, the tunings of the three statistical factors
were faithfully captured by Wilson’s model,45 which yielded
three separate channels (see Fig. 7). The third factor is
similarly positioned to the covariance factor driven by
optics at a higher spatial frequency.17 Furthermore, two
lowest achromatic channels (blue and pink lines in Fig. 6B)
show similar tunings to those of the two chromatic chan-
nels. This similarity in their tuning does not necessarily
support an interdependence of these channels15 because
we observed no dependent relationships between them.
Instead, it would suggest that vision of luminance modu-
lations (i.e., achromatic contrast) can simply benefit from an
additional high spatial frequency channel compared to color
vision, thereby supporting the classical view that achromatic
vision processes finer details.50 Conclusions from our factor
analysis confirm the findings from primate studies, namely
that achromatic and chromatic vision are processed inde-
pendently50–55 and that there is a form of multiplexing of
retinal ganglion cells resulting in the dependency of spatial
frequency56 that results in similar tunings of the achro-
matic and chromatic channels. Midget ganglion cells relay
color information and spatial resolution to the parvocellu-
lar layers of the lateral geniculate nucleus. For example, if
the parvocellular pathway is perturbed, color sensitivity and
achromatic sensitivity at high spatial frequency are compro-
mised.50,51

We realized that there has been a shortage of compu-
tational tools for vision research and ophthalmology. For
this reason, we created the smCSF package, which is for
researchers and clinicians who wish to plot elegant contrast
sensitivity functions and perform standardized data analy-
sis routines that have been used in the last decade with
minimal coding (code examples and documentation in
https://smin95.github.io/dataviz: Chapters 13–16). It also
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allows the user to easily compute the qCSF parameters for all
subjects across experimental conditions, groups and repeti-
tions in a single line of code if the data frame has an appro-
priate structure. In addition, the package provides functions
for fitting the sensitivity curve from raw data; examples are
shown in Chapters 13 and 14 of the documentation. Finally,
it provides some additional methods for performing factor
analysis (Chapter 16). To our knowledge, this library is the
first R package for analyzing and visualizing contrast sensi-
tivity data. It has been built to simplify the process of data
visualization and analysis of contrast sensitivity data within
a single software environment. We hope that the methods
and the tool we have introduced will be useful for the
researchers and clinicians in the fields of vision science and
ophthalmology.
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APPENDIX

qCSF Parameters and smCSF

The smCSF package fits the CSF based on the
maximum likelihood estimates of key parameters
of the truncated log-parabola model for human
contrast sensitivity data.35–37 The mathematical
model predicts the shape of the CSF, using the equa-
tions below:

S′( f ) = log10(γmax ) − κ

(
log10( f ) − log10( fmax )

β ′/2

)2

,

where κ = log10 (2) andβ ′ = log10 (2β )

S
(
f
) = log10 (γmax ) − δ, if f < fmax

and S′( f ) < log10 (γmax ) − δ

S( f ) = S′( f )when f > fmax.

Various functions from the package, such as
sm_CSF(), sm_areaCSF() and sm_ribbonCSF(), can
plot the best-fitted model automatically in log scales
using a data frame that contains experimental data
with R implementations of the equations above.
These functions estimate the parameters based on
default arguments and fit a best possible model
based on maximum likelihood. They have been
created as direct extensions of ggplot2 via ggproto
objects.57 The parameters specify the overall char-
acteristic of the sensitivity function, rather than a
data point at a specific frequency (Fig. A1).
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FIGURE A1. Visual representation of the parameters that define
the overall characteristic of the sensitivity across a range of spatial
frequency.

Downloaded from iovs.arvojournals.org on 01/06/2024



Factor Analysis With Resampling and Visualization IOVS | January 2024 | Vol. 65 | No. 1 | Article 17 | 13

Raw data from Kim et al.
0.00

0.25

0.50

0.75

1.00

0.2
5
0.3

5
0.4

9
0.6

8
0.9

4
1.3

1
1.8

3
2.5

4
3.5

4
4.9

3
6.8

7
9.5

7

Spatial frequency (c/deg)

Lo
ad

in
g 

sc
or

es
A Observed loadings

Resampled data from Kim et al.
0.00

0.25

0.50

0.75

1.00

0.2
5
0.3

5
0.4

9
0.6

8
0.9

4
1.3

1
1.8

3
2.5

4
3.5

4
4.9

3
6.8

7
9.5

7

Spatial frequency (c/deg)

Si
m

ul
at

ed
 lo

ad
in

g 
sc

or
es

B Resampled raw data

qCSF parameters from Kim et al.
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FIGURE A2. Loading scores from raw data and Monte Carlo simulations. (A) Loading scores based on the achromatic sensitivity data (0.25–
9.57 c/deg) from Kim et al.35 (B) Mean loading scores based on the resampled data from 1000 simulations. (C) Mean loading scores from
1000 simulations based on the factor analysis of the extrapolated data computed from the resampled qCSF parameters at the same tested
spatial frequencies.

1. Peak gain (γmax): Peak contrast sensitivity
(hence, it is in the y-axis unit).

2. Peak spatial frequency (fmax): Spatial
frequency where the peak gain is located
(hence, it is in the x-axis unit).

3. Bandwidth (β): Width of the CSF at half of
the peak gain. The larger the bandwidth, the
higher the overall sensitivity across the region
of high spatial frequencies.

4. Truncation value (δ): This is a parameter
creates a narrow plateau (i.e., flat curve)
at the low spatial frequency range and
resolves the issue of the CSF’s asymmetry.
In this model, however, the factor plays a
very minor role and the plateau is usually
unnoticeable.

The four parameters are often used to evaluate
the status of the visual system directly from the
contrast sensitivity data. These parameters can be
computed across all subjects, groups, and experi-
mental conditions with a single line of code using
sm_param_list(). More information about the pack-
age is uploaded online (https://smin95.github.io/
dataviz: Chapters 13–16), where it will be continu-
ously updated.

Resampling Method for Factor Analysis

It turns out that resampling the sensitivity data
themselves does not retain the variability of the
data from each observer. This is because it would
be analogous to resampling “parts” (from one
spatial frequency to another) of the contrast sensi-
tivity function (CSF), rather than its whole, which
retains the partial covariance. Breaking it up into
“parts” and re-picking them with replacement
across observers would remove the partial covari-

ance that can only be found in the whole function.
This would defeat the purpose of factor analysis,
which aims to identify a factor that causes data to
covary with some data but not others. Covariance
refers to the joint variability of response variables
(ex. sensitivity). Therefore, to retain the partial rela-
tionship among variables, we fitted the data with
the log truncated model of qCSF,36 and estimated
the model parameters using maximum likelihood.
Then, we resampled the parameters with replace-
ment to create a simulated dataset in the form of
a full CSF (note that parameters were considered
being independent), and computed the eigenval-
ues with factor analysis. Resampling was performed
independently because it is more robust to poten-
tial outliers. These steps would be one iteration,
and 1000 iterations were performed in total. If
we resampled the sensitivity data from multiple
observers to create a simulated dataset, the resam-
pled data might still produce a normal CSF with a
peak and trough, but it would not retain covariance
of the data. A computational demonstration has
been posted online (https://smin95.com/dataviz:
Chapter 16). Also, factor analytic results from Monte
Carlo simulations are shown above to illustrate this
point.

To explore how different sampling methods
affect factor loadings, we performed Monte Carlo
simulations. The loadings from the original raw
data are shown in the panel A of Figure A2. If
the data were directly resampled, the covariance
disappeared, and loading scores from factor analy-
sis reached near 0 (i.e., no correlation or covariance;
panel B of Fig. A2). However, if factor analysis was
performed using recomputed data from resampled
qCSF parameters at the same spatial frequencies
as those from the raw data, then the loadings had
similar magnitudes, tuning, and intersection points
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compared to those from the original data (panel C
of Fig. A2).

NonParametric Resampling Methods With smCSF

The code fragments below extract the four param-
eters from the psychophysical data, resample them
with replacement independently at a certain sample
size, generate the fitted values of sensitivity from
the resampled parameters, and then perform factor
analysis to compute the eigenvalue for each iter-
ation. The eigenvalues are then summarized as
means and upper and lower ends of the 95% confi-
dence intervals. In each code, > is the prompt
of R and + denotes a continuation from the
previous line. The bolded codes are related to
smCSF.

> library(tidyverse)
> library(smCSF) # devtools::

install_github(‘smin95/smCSF’)
> library(smplot2) #

devtools::install_github(‘smin95/
smplot2’)

First, the three libraries have to be loaded to
memory. The installation codes can return error if
the version of the devtools package is not up to date;
the user should redownload the devtools package if
the installation of smCSF fails.

> data_frame <- read_csv(’https://
www.smin95.com/data_ACh.csv’) %>%

+ group_by(Subject, SpatialFreq)
%>%

+ summarise(Sensitivity =
mean(Sensitivity),

+ Repetition = ’avg’)

Next, the sample data should be loaded to
memory from online. It contains data for achromatic
sensitivity. There are two repetitions, and these are
averaged. The final output is stored in the variable
data_frame.

> param_res <- sm_params_list
(subjects = ’Subject’,

+ conditions = ’Repetition’,
+ x = ’SpatialFreq’, values =

’Sensitivity’, data = data_frame)

sm_params_list() from the smCSF package allows
the users to compute the five parameters for all
subjects across different conditions and/or groups
with a single line of code. It has several arguments.
It returns a list of important outputs. The user must

identify the column that has all the subject identi-
fiers within the subjects argument, as well as for
the column with identifiers for the conditions in
the conditions argument. Likewise, the argument x
is for the column with spatial frequencies, values
for the column with the contrast sensitivity data
(in linear units) and data for the data frame itself
that contains the linear data of spatial frequency
and contrast sensitivity. Its output is a list with two
vectors. The list from sm_params_list() can be used
as argument for the function sm_np_boot(), which
performs nonparametric simulation by resampling
the parameters with replacement and refitting the
CSF using the parameters. The output is saved in
the variable param_res, which is short for parame-
ter results.

> nSim <- 1000 # 1000 iterations
> nObs <- 51 # 51 observers in the

dataset
> boot_res <- sm_np_boot(param_res,

n = nObs, nSim = nSim)

The function sm_np_boot() returns a data frame
of the averaged eigenvalues from the simula-
tions as well as their 95% confidence intervals
of the resampled and randomly generated data
(from parallel analysis) of the CSF parameters. The
number of sampled observer (n) should be iden-
tical to the observed sample size (nObs) because
of the nature of nonparametric bootstrapping. The
number of simulations can be specified by using
nSim argument, which in this case has been set
to 1000. The output from the function can then
be directly plotted below (i.e., similar to Fig. 4)
in the form of a scree plot with error bars using
sm_plot_boot().

> sm_plot_boot(boot_res, shapes =
16) + ylab(’Mean eigenvalues’)

Based on this analysis, the number of retained
factors should be the ones that do not have their
error bars overlapped with those of the randomly
generated data from parallel analysis. However, if
the reader is interested in computing the uncer-
tainty of eigenvalues using another model, it is also
possible by resampling the relevant parameters of
an appropriate model, which can be as simple as
a simple regression model with its slope and inter-
cept. Then using the resampled parameters, users
can generate the fitted values, and perform factor
analysis using the fitted data to compute the eigen-
value from each iteration.
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